(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
top1(free(x), y) → top2(check(new(x)), y)
top1(free(x), y) → top2(new(x), check(y))
top1(free(x), y) → top2(check(x), new(y))
top1(free(x), y) → top2(x, check(new(y)))
top2(x, free(y)) → top1(check(new(x)), y)
top2(x, free(y)) → top1(new(x), check(y))
top2(x, free(y)) → top1(check(x), new(y))
top2(x, free(y)) → top1(x, check(new(y)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
top1(free(x), y) → top2(check(new(x)), y)
top1(free(x), y) → top2(new(x), check(y))
top1(free(x), y) → top2(check(x), new(y))
top1(free(x), y) → top2(x, check(new(y)))
top2(x, free(y)) → top1(check(new(x)), y)
top2(x, free(y)) → top1(new(x), check(y))
top2(x, free(y)) → top1(check(x), new(y))
top2(x, free(y)) → top1(x, check(new(y)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
top1(free(x), y) → top2(check(new(x)), y)
top1(free(x), y) → top2(new(x), check(y))
top1(free(x), y) → top2(check(x), new(y))
top1(free(x), y) → top2(x, check(new(y)))
top2(x, free(y)) → top1(check(new(x)), y)
top2(x, free(y)) → top1(new(x), check(y))
top2(x, free(y)) → top1(check(x), new(y))
top2(x, free(y)) → top1(x, check(new(y)))
new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)
check(free(x)) → free(check(x))
check(new(x)) → new(check(x))
check(old(x)) → old(check(x))
check(old(x)) → old(x)
Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
top1,
top2,
check,
new,
oldThey will be analysed ascendingly in the following order:
top1 = top2
check < top1
new < top1
check < top2
new < top2
new < check
old < check
(6) Obligation:
Innermost TRS:
Rules:
top1(
free(
x),
y) →
top2(
check(
new(
x)),
y)
top1(
free(
x),
y) →
top2(
new(
x),
check(
y))
top1(
free(
x),
y) →
top2(
check(
x),
new(
y))
top1(
free(
x),
y) →
top2(
x,
check(
new(
y)))
top2(
x,
free(
y)) →
top1(
check(
new(
x)),
y)
top2(
x,
free(
y)) →
top1(
new(
x),
check(
y))
top2(
x,
free(
y)) →
top1(
check(
x),
new(
y))
top2(
x,
free(
y)) →
top1(
x,
check(
new(
y)))
new(
free(
x)) →
free(
new(
x))
old(
free(
x)) →
free(
old(
x))
new(
serve) →
free(
serve)
old(
serve) →
free(
serve)
check(
free(
x)) →
free(
check(
x))
check(
new(
x)) →
new(
check(
x))
check(
old(
x)) →
old(
check(
x))
check(
old(
x)) →
old(
x)
Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve
Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))
The following defined symbols remain to be analysed:
new, top1, top2, check, old
They will be analysed ascendingly in the following order:
top1 = top2
check < top1
new < top1
check < top2
new < top2
new < check
old < check
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
new(
gen_free:serve3_0(
n5_0)) →
gen_free:serve3_0(
+(
1,
n5_0)), rt ∈ Ω(1 + n5
0)
Induction Base:
new(gen_free:serve3_0(0)) →RΩ(1)
free(serve)
Induction Step:
new(gen_free:serve3_0(+(n5_0, 1))) →RΩ(1)
free(new(gen_free:serve3_0(n5_0))) →IH
free(gen_free:serve3_0(+(1, c6_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
top1(
free(
x),
y) →
top2(
check(
new(
x)),
y)
top1(
free(
x),
y) →
top2(
new(
x),
check(
y))
top1(
free(
x),
y) →
top2(
check(
x),
new(
y))
top1(
free(
x),
y) →
top2(
x,
check(
new(
y)))
top2(
x,
free(
y)) →
top1(
check(
new(
x)),
y)
top2(
x,
free(
y)) →
top1(
new(
x),
check(
y))
top2(
x,
free(
y)) →
top1(
check(
x),
new(
y))
top2(
x,
free(
y)) →
top1(
x,
check(
new(
y)))
new(
free(
x)) →
free(
new(
x))
old(
free(
x)) →
free(
old(
x))
new(
serve) →
free(
serve)
old(
serve) →
free(
serve)
check(
free(
x)) →
free(
check(
x))
check(
new(
x)) →
new(
check(
x))
check(
old(
x)) →
old(
check(
x))
check(
old(
x)) →
old(
x)
Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve
Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))
The following defined symbols remain to be analysed:
old, top1, top2, check
They will be analysed ascendingly in the following order:
top1 = top2
check < top1
check < top2
old < check
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
old(
gen_free:serve3_0(
n254_0)) →
gen_free:serve3_0(
+(
1,
n254_0)), rt ∈ Ω(1 + n254
0)
Induction Base:
old(gen_free:serve3_0(0)) →RΩ(1)
free(serve)
Induction Step:
old(gen_free:serve3_0(+(n254_0, 1))) →RΩ(1)
free(old(gen_free:serve3_0(n254_0))) →IH
free(gen_free:serve3_0(+(1, c255_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
top1(
free(
x),
y) →
top2(
check(
new(
x)),
y)
top1(
free(
x),
y) →
top2(
new(
x),
check(
y))
top1(
free(
x),
y) →
top2(
check(
x),
new(
y))
top1(
free(
x),
y) →
top2(
x,
check(
new(
y)))
top2(
x,
free(
y)) →
top1(
check(
new(
x)),
y)
top2(
x,
free(
y)) →
top1(
new(
x),
check(
y))
top2(
x,
free(
y)) →
top1(
check(
x),
new(
y))
top2(
x,
free(
y)) →
top1(
x,
check(
new(
y)))
new(
free(
x)) →
free(
new(
x))
old(
free(
x)) →
free(
old(
x))
new(
serve) →
free(
serve)
old(
serve) →
free(
serve)
check(
free(
x)) →
free(
check(
x))
check(
new(
x)) →
new(
check(
x))
check(
old(
x)) →
old(
check(
x))
check(
old(
x)) →
old(
x)
Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve
Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
old(gen_free:serve3_0(n254_0)) → gen_free:serve3_0(+(1, n254_0)), rt ∈ Ω(1 + n2540)
Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))
The following defined symbols remain to be analysed:
check, top1, top2
They will be analysed ascendingly in the following order:
top1 = top2
check < top1
check < top2
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
check(
gen_free:serve3_0(
+(
1,
n507_0))) →
*4_0, rt ∈ Ω(n507
0)
Induction Base:
check(gen_free:serve3_0(+(1, 0)))
Induction Step:
check(gen_free:serve3_0(+(1, +(n507_0, 1)))) →RΩ(1)
free(check(gen_free:serve3_0(+(1, n507_0)))) →IH
free(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
Innermost TRS:
Rules:
top1(
free(
x),
y) →
top2(
check(
new(
x)),
y)
top1(
free(
x),
y) →
top2(
new(
x),
check(
y))
top1(
free(
x),
y) →
top2(
check(
x),
new(
y))
top1(
free(
x),
y) →
top2(
x,
check(
new(
y)))
top2(
x,
free(
y)) →
top1(
check(
new(
x)),
y)
top2(
x,
free(
y)) →
top1(
new(
x),
check(
y))
top2(
x,
free(
y)) →
top1(
check(
x),
new(
y))
top2(
x,
free(
y)) →
top1(
x,
check(
new(
y)))
new(
free(
x)) →
free(
new(
x))
old(
free(
x)) →
free(
old(
x))
new(
serve) →
free(
serve)
old(
serve) →
free(
serve)
check(
free(
x)) →
free(
check(
x))
check(
new(
x)) →
new(
check(
x))
check(
old(
x)) →
old(
check(
x))
check(
old(
x)) →
old(
x)
Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve
Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
old(gen_free:serve3_0(n254_0)) → gen_free:serve3_0(+(1, n254_0)), rt ∈ Ω(1 + n2540)
check(gen_free:serve3_0(+(1, n507_0))) → *4_0, rt ∈ Ω(n5070)
Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))
The following defined symbols remain to be analysed:
top2, top1
They will be analysed ascendingly in the following order:
top1 = top2
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol top2.
(17) Obligation:
Innermost TRS:
Rules:
top1(
free(
x),
y) →
top2(
check(
new(
x)),
y)
top1(
free(
x),
y) →
top2(
new(
x),
check(
y))
top1(
free(
x),
y) →
top2(
check(
x),
new(
y))
top1(
free(
x),
y) →
top2(
x,
check(
new(
y)))
top2(
x,
free(
y)) →
top1(
check(
new(
x)),
y)
top2(
x,
free(
y)) →
top1(
new(
x),
check(
y))
top2(
x,
free(
y)) →
top1(
check(
x),
new(
y))
top2(
x,
free(
y)) →
top1(
x,
check(
new(
y)))
new(
free(
x)) →
free(
new(
x))
old(
free(
x)) →
free(
old(
x))
new(
serve) →
free(
serve)
old(
serve) →
free(
serve)
check(
free(
x)) →
free(
check(
x))
check(
new(
x)) →
new(
check(
x))
check(
old(
x)) →
old(
check(
x))
check(
old(
x)) →
old(
x)
Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve
Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
old(gen_free:serve3_0(n254_0)) → gen_free:serve3_0(+(1, n254_0)), rt ∈ Ω(1 + n2540)
check(gen_free:serve3_0(+(1, n507_0))) → *4_0, rt ∈ Ω(n5070)
Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))
The following defined symbols remain to be analysed:
top1
They will be analysed ascendingly in the following order:
top1 = top2
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol top1.
(19) Obligation:
Innermost TRS:
Rules:
top1(
free(
x),
y) →
top2(
check(
new(
x)),
y)
top1(
free(
x),
y) →
top2(
new(
x),
check(
y))
top1(
free(
x),
y) →
top2(
check(
x),
new(
y))
top1(
free(
x),
y) →
top2(
x,
check(
new(
y)))
top2(
x,
free(
y)) →
top1(
check(
new(
x)),
y)
top2(
x,
free(
y)) →
top1(
new(
x),
check(
y))
top2(
x,
free(
y)) →
top1(
check(
x),
new(
y))
top2(
x,
free(
y)) →
top1(
x,
check(
new(
y)))
new(
free(
x)) →
free(
new(
x))
old(
free(
x)) →
free(
old(
x))
new(
serve) →
free(
serve)
old(
serve) →
free(
serve)
check(
free(
x)) →
free(
check(
x))
check(
new(
x)) →
new(
check(
x))
check(
old(
x)) →
old(
check(
x))
check(
old(
x)) →
old(
x)
Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve
Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
old(gen_free:serve3_0(n254_0)) → gen_free:serve3_0(+(1, n254_0)), rt ∈ Ω(1 + n2540)
check(gen_free:serve3_0(+(1, n507_0))) → *4_0, rt ∈ Ω(n5070)
Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
(21) BOUNDS(n^1, INF)
(22) Obligation:
Innermost TRS:
Rules:
top1(
free(
x),
y) →
top2(
check(
new(
x)),
y)
top1(
free(
x),
y) →
top2(
new(
x),
check(
y))
top1(
free(
x),
y) →
top2(
check(
x),
new(
y))
top1(
free(
x),
y) →
top2(
x,
check(
new(
y)))
top2(
x,
free(
y)) →
top1(
check(
new(
x)),
y)
top2(
x,
free(
y)) →
top1(
new(
x),
check(
y))
top2(
x,
free(
y)) →
top1(
check(
x),
new(
y))
top2(
x,
free(
y)) →
top1(
x,
check(
new(
y)))
new(
free(
x)) →
free(
new(
x))
old(
free(
x)) →
free(
old(
x))
new(
serve) →
free(
serve)
old(
serve) →
free(
serve)
check(
free(
x)) →
free(
check(
x))
check(
new(
x)) →
new(
check(
x))
check(
old(
x)) →
old(
check(
x))
check(
old(
x)) →
old(
x)
Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve
Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
old(gen_free:serve3_0(n254_0)) → gen_free:serve3_0(+(1, n254_0)), rt ∈ Ω(1 + n2540)
check(gen_free:serve3_0(+(1, n507_0))) → *4_0, rt ∈ Ω(n5070)
Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
(24) BOUNDS(n^1, INF)
(25) Obligation:
Innermost TRS:
Rules:
top1(
free(
x),
y) →
top2(
check(
new(
x)),
y)
top1(
free(
x),
y) →
top2(
new(
x),
check(
y))
top1(
free(
x),
y) →
top2(
check(
x),
new(
y))
top1(
free(
x),
y) →
top2(
x,
check(
new(
y)))
top2(
x,
free(
y)) →
top1(
check(
new(
x)),
y)
top2(
x,
free(
y)) →
top1(
new(
x),
check(
y))
top2(
x,
free(
y)) →
top1(
check(
x),
new(
y))
top2(
x,
free(
y)) →
top1(
x,
check(
new(
y)))
new(
free(
x)) →
free(
new(
x))
old(
free(
x)) →
free(
old(
x))
new(
serve) →
free(
serve)
old(
serve) →
free(
serve)
check(
free(
x)) →
free(
check(
x))
check(
new(
x)) →
new(
check(
x))
check(
old(
x)) →
old(
check(
x))
check(
old(
x)) →
old(
x)
Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve
Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
old(gen_free:serve3_0(n254_0)) → gen_free:serve3_0(+(1, n254_0)), rt ∈ Ω(1 + n2540)
Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))
No more defined symbols left to analyse.
(26) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
(27) BOUNDS(n^1, INF)
(28) Obligation:
Innermost TRS:
Rules:
top1(
free(
x),
y) →
top2(
check(
new(
x)),
y)
top1(
free(
x),
y) →
top2(
new(
x),
check(
y))
top1(
free(
x),
y) →
top2(
check(
x),
new(
y))
top1(
free(
x),
y) →
top2(
x,
check(
new(
y)))
top2(
x,
free(
y)) →
top1(
check(
new(
x)),
y)
top2(
x,
free(
y)) →
top1(
new(
x),
check(
y))
top2(
x,
free(
y)) →
top1(
check(
x),
new(
y))
top2(
x,
free(
y)) →
top1(
x,
check(
new(
y)))
new(
free(
x)) →
free(
new(
x))
old(
free(
x)) →
free(
old(
x))
new(
serve) →
free(
serve)
old(
serve) →
free(
serve)
check(
free(
x)) →
free(
check(
x))
check(
new(
x)) →
new(
check(
x))
check(
old(
x)) →
old(
check(
x))
check(
old(
x)) →
old(
x)
Types:
top1 :: free:serve → free:serve → top1:top2
free :: free:serve → free:serve
top2 :: free:serve → free:serve → top1:top2
check :: free:serve → free:serve
new :: free:serve → free:serve
old :: free:serve → free:serve
serve :: free:serve
hole_top1:top21_0 :: top1:top2
hole_free:serve2_0 :: free:serve
gen_free:serve3_0 :: Nat → free:serve
Lemmas:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_free:serve3_0(0) ⇔ serve
gen_free:serve3_0(+(x, 1)) ⇔ free(gen_free:serve3_0(x))
No more defined symbols left to analyse.
(29) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
new(gen_free:serve3_0(n5_0)) → gen_free:serve3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
(30) BOUNDS(n^1, INF)